#"what we have to do here is compare the distance (d)"#
#"between the centres to the sum of the radii"#
#• " if sum of radii">d" then circles overlap"#
#• " if sum of radii"< d" then no overlap"#
#"before calculating d we require to find the new centre"#
#"of B under the given translation"#
#"under the translation "<2,4>#
#(3,7)to(3+2,7+4)to(5,11)larrcolor(red)"new centre of B"#
#"to calculate d use the "color(blue)"distance formula"#
#•color(white)(x)d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)#
#"let "(x_1,y_1)=(1,2)" and "(x_2,y_2)=(5,11)#
#d=sqrt((5-1)^2+(11-2)^2)=sqrt(16+81)=sqrt117~~10.82#
#"sum of radii "=3+5=8#
#"since sum of radii"< d" then no overlap"#
#"minimum distance "=d-" sum of radii"#
#color(white)(xxxxxxxxxxxxx)=10.82-8=2.82#
graph{((x-1)^2+(y-2)^2-9)((x-5)^2+(y-11)^2-25)=0 [-20, 20, -10, 10]}