#"What we have to do here is compare the distance (d) "#
#"between the centres to the sum of their radii"#
#• " if sum of radii">d" then circles overlap"#
#• " if sum of radii">d" then no overlap"#
#"Before we calculate d we require to find the centre of"#
#"B under the given translation"#
#"under the translation "<2,-3>#
#(4,7)to(4+2,7-3)to(6,4)larrcolor(red)"new centre of B"#
#"to calculate d use the "color(blue)"distance formula"#
#•color(white)(x)d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)#
#"let "(x_1,y_1)=(6,4)" and "(x_2,y_2)=(1,2)#
#d=sqrt((1-6)^2+(2-4)^2)=sqrt(25+4)=sqrt29~~5.39#
#"sum of radii "=3+1=4#
#"since sum of radii"< d" then no overlap"#
#"minimum distance "=d-"sum of radii"#
#color(white)("minimum distance ")=5.39-4=1.39#
graph{((x-1)^2+(y-2)^2-9)((x-6)^2+(y-4)^2-1)=0 [-10, 10, -5, 5]}