#"What we have to do here is to compare the distance (d)"#
#"to the sum of the radii"#
#• " if sum of radii">d" then circles overlap"#
#• " if sum of radii"< d" then no overlap"#
#"Before calculating d we require to find the new centre"#
#"of B under the given translation"#
#"under a translation "< -3, 4>#
#(4,5)to(4-3,5+4)to(1,9)larrcolor(red)"new centre of B"#
#"to calculate d use the "color(blue)"distance formula"#
#•color(white)(x)d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)#
#"let "(x_1,y_1)=(8,2)" and "(x_2,y_2)=(1,9)#
#d=sqrt((1-8)^2+(9-2)^2)=sqrt(49+49)=sqrt98~~9.9#
#"sum of radii "=4+3=7#
#"since sum of radii"< d" then no overlap"#
#"minimum distance "=d-" sum of radii"#
#color(white)(xxxxxxxxxxxxx)=9.9-7=2.9#
graph{((x-8)^2+(y-2)^2-16)((x-1)^2+(y-9)^2-9)=0 [-20, 20, -10, 10]}