#"what we have to do here is compare the distance (d)"#
#"between the centres to the sum of the radii"#
#• " if sum of radii">d" then circles overlap"#
#• " if sum of radii"< d " then no overlap"#
#"before calculating d we require to find the new centre"#
#"of B under the given translation"#
#"under a translation "< -2,2>#
#(5,7)to(5-2,7+2)to(3,9)larrcolor(red)"new centre of B"#
#"to calculate d use the "color(blue)"distance formula"#
#•color(white)(x)d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)#
#"let "(x_1,y_1)=(6,2)" and "(x_2,y_2)=(3,9)#
#d=sqrt((3-6)^2+(9-2)^2)=sqrt(9+49)=sqrt58~~7.62#
#"sum of radii "=4+3=7#
#"since sum of radii"< d" then no overlap"#
#"minimum distance "=d-" sum of radii"#
#color(white)(xxxxxxxxxxxxx)=7.62-7=0.62#
graph{((x-6)^2+(y-2)^2-16)((x-3)^2+(y-9)^2-9)=0 [-20, 20, -10, 10]}