#"What we have to do here is compare the distance d "#
#"between the centres to the sum of the radii"#
#• " if sum of radii">d" then circles overlap"#
#• " if sum of radii"< d" then no overlap"#
#"Before calculating d we require to find the new centre"#
#"of B under the given translation"#
#"under the translation "< 4,8>#
#(3,7)to(3+4,7+8)to(7,15)larrcolor(red)"new centre of B"#
#"to calculate d use the "color(blue)"distance formula"#
#•color(white)(x)d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)#
#"let "(x_1,y_1)=(8,2)" and "(x_2,y_2)=(7,15)#
#d=sqrt((7-8)^2+(15-2)^2)=sqrt(1+169)=sqrt170~~13.01#
#"sum of radii "=5+3=8#
#"Since sum of radii"< d" then no overlap"#
#"min distance "=d-" sum of radii"#
#color(white)(xxxxxxxxxx)=13.01-8=5.01#
graph{((x-8)^2+(y-2)^2-25)((x-7)^2+(y-15)^2-9)=0 [-40, 40, -20, 20]}