#"What we have to do here is compare the distance d "#

#"between the centres of the circles to the sum of the radii"#

#• " if sum of radii">d" then circles overlap"#

#• " if sum of radii"< d" then no overlap"#

#"Before calculating d we require to find the new centre"#

#"of B under the given translation"#

#"under the translation "< 3,1>#

#(1,7)to(1+3,7+1)to(4,8)larrcolor(red)"new centre of B"#

#"to calculate d use the "color(blue)"distance formula"#

#•color(white)(x)d=sqrt((x_2-x_1)^2+(y_2-y_1)^2)#

#"let "(x_1,y_1)=(2,5)" and "(x_2,y_2)=(4,8)#

#d=sqrt((4-2)^2+(8-5)^2)=sqrt(4+9)=sqrt13~~3.61#

#"sum of radii "=6+3=9#

#"Since sum of radii">d" then circles overlap"#

graph{((x-2)^2+(y-5)^2-36)((x-4)^2+(y-8)^2-9)=0 [-40, 40, -20, 20]}