Cos(x+pi/3)+cos(x-pi/3)=cosx Have the show the statement and the rules? Thanks again

4 Answers
Apr 7, 2018

Recall that #cos(A +B) = cosAcosB - sinAsinB# and #cos(A-B) = cosAcosB + sinAsinB#.

#cosxcos(pi/3) - sinxsin(pi/3)+ cosxcos(pi/3) + sinxsin(pi/3) = cosx#

#2cosxcos(pi/3) = cosx#

#2cosx(1/2) = cosx#

#cosx= cosx#

#LHS = RHS#

As required.

Hopefully this helps!

Apr 7, 2018

Please see below.

Explanation:

.

#cos(x+pi/3)+cos(x-pi/3)=cosx#

We have a Sum to Product formula that gives us:

#cosalpha+cosbeta=2cos((alpha+beta)/2)cos((alpha-beta)/2)#

Using this formula, we get:

#cos(x+pi/3)+cos(x-pi/3)=2cosxcos(pi/3)=2cosx(1/2)=cosx#

Apr 7, 2018

See below.

Explanation:

Identities:

#color(red)bb(cos(A+B)=cosAcosB-sinAsinB)#

#color(red)bb(cos(A-B)=cosAcosB+sinAsinB)#

I'll do these in two parts, because of space:

#cos(x+pi/3)=cos(x)cos(pi/3)-sin(x)sin(pi/3)#

# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =cos(x)(1/2)-sin(x)(sqrt(3)/2)#

#cos(x-pi/3)=cos(x)cos(pi/3)+sin(x)sin(pi/3)#

# \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ =cos(x)(1/2)+sin(x)(sqrt(3)/2)#

#cos(x+pi/3)+cos(x-pi/3)#

#=cos(x)(1/2)-sin(x)(sqrt(3)/2)+cos(x)(1/2)+sin(x)(sqrt(3)/2)#

#cos(x)(1/2)-cancel(sin(x)(sqrt(3)/2))+cos(x)(1/2)+cancel(sin(x)(sqrt(3)/2))#

#cos(x)(1/2)+cos(x)(1/2)#

#cancel(2)cos(x)cancel((1/2))#

#cosx#

As required:

#LHS-=RHS#

Apr 7, 2018

Well, I don't know the rules on your Rule Menu, so I'm using mine.

LHS #=> cos(x+pi/3)+cos(x-pi/3)#

Applying, #color(red)(cos(A+B) = cosAcosB - sinAsinB# and #color(magenta)(cos(A-B) = cosAcosB + sinAsinB#

#color(white)(dd#

#=> color(red)(cosxcos(pi/3) -sinxsin(pi/3)) + color(magenta)(cosxcos (pi/3) +sinxsin(pi/3) #

#=> cancel2cosx(1/cancel2)# #color(white)(wwwwwwwww# #["as " cos(pi/3)=1/2]#

#=> cosx#