(a). 11.2
(b). 9.24
(c). 5.16
#NH_(3(aq))+H_2O_((l))rarrNH_(4(aq))^(+)+OH_((aq))^-#
Initial moles #NH_3# = 0.1335
Initial moles #OH^-# = 0
If #x# moles of #NH_3# are used up then:
Equlibrium moles #NH_3 =( 0.1335 - x)#
Equilibrium moles #OH^-# = #x#
#K_b=([NH_4^(+)][OH^-])/([NH_3])=1.75xx10^(-5)#
Since #x# is very small we assume #(0.1335=x)rarr0.1355#
So: #([OH^-]^(2))/(0.1335)=1.75xx10^(-5)#
From which #[OH^-] = 1.53xx10^(-3)M#
#pOH=2.815#
#pH=pK_w-pOH#
#pH=14-2.815= 11.2 #
At the mid - point of the titration #[NH_4^+]=NH_3]#
So #K_b=[OH^-]=1.75xx10^(-5)#
#[H^+]=(K_w)/([OH^-])=(10^(-14))/(1.75xx10^(-5))=5.714xx10^(-10)#
#pH=-log(5.714xx10^(-10))#
#pH=9.245#
We need now to get the total volume
#NH_3+HClrarrNH_4Cl+H_2O#
moles #NH_3 = (0.1335xx25)/(1000)=3.34xx10^(-3)#
So moles #HCl=3.34xx10^(-3)#
#c=n/v#
#v=n/c = (3.34xx10^(-3))/(0.235)L=14.2ml#
So total volume = #25 +14.2 = 39.2ml#
The final pH will be slightly acidic due to salt hydrolysis of #NH_4^+#:
#NH_4^(+)rightleftharpoonsNH_3+H^+#
no. moles #NH_4^(+)=3.34xx10^(-3)#
So #[NH_4^(+)]=(3.34xx10^(-3))/(39.2xx10^(-3))=0.0852M#
#K_a=([H^+]^2)/(0.0852)#
We know that #K_a=K_w/K_b=(10^(-14))/(1.75xx10^(-5))=5.7xx10^(-10)#
So #([H^+]^2)/(0.0852)=5.7xx10^(-10)#
#[H^+]=6.968xx10^(-6)#
#pH=-log(6.968xx10^(-6))#
#pH=5.16#