Do #x,y,z,t ∈ Q# exist so that #(x+y√2)^2+(z+t√2)^2 = 5+4√2#?

1 Answer

See below.

Explanation:

Developing

#(x+y√2)^2+(z+t√2)^2=x^2+z^2+2(y^2+t^2)+2(xy+zt) sqrt2 = 5+4√2#

so we have

#{(x^2+2y^2+z^2+2t^2=5),(xy+zt=2):}#

making now

#y = lambda x# and #t = mu z#

#{(x^2(1+2lambda^2)+z^2(1+2mu^2)=5),(x^2 lambda+z^2 mu = 2):}#

obtaining

#{(x^2 =((5 - 4 mu) mu-2)/((lambda - mu) ( 2 lambda mu-1)) ),(z^2=(2 + lambda (4 lambda-5))/((lambda - mu) (2 lambda mu-1))):}#

now

#(x/z)^2 = ((5 - 4 mu) mu-2)/(2 + lambda (4 lambda-5)) = -(4 mu^2-5 mu+2)/(4lambda^2-5lambda+2)#

and also

#4 mu^2-5 mu+2 > 0# and #4lambda^2-5lambda+2 > 0# for all #{mu, lambda} in QQ^2#

We conclude, as #(x/z)^2 < 0#, that the rational formulation is false.

There do not exist #{x,y,z,t} in QQ^4# such that

#(x+y√2)^2+(z+t√2)^2 = 5+4sqrt2#