Does #sum_(n=2)^oo1/(nln(n))# converges ?

1 Answer
Feb 6, 2018

The series diverges.

Explanation:

Use the integral test. If we let #u =lnn#, then #du = 1/ndn# and #ndu = dn#

#I = int_2^oo 1/(nlnn) dn#

#I = int_2^oo 1/(n u) * ndu#

#I = int_2^oo 1/u du#

#I = [lnu]_2^oo#

#I = [ln(lnn)]_2^oo#

The limit #lim_(x->oo) ln(lnn)# clearly equals #oo#, therefore the series diverges.

Hopefully this helps!