Evaluate? a) lim(x tends to 0)sin5x/tan3x

2 Answers
Mar 29, 2018

#L=5/3#

Explanation:

We know that

#color(red)((1)lim_(x to0)sintheta/theta=1 and lim_(x to0)cosx=1#

Here,

#L=lim_(x to0)(sin5x)/(tan3x)#

#=lim_(x to0)(sin5x)/((sin3x)/(cos3x))#

#=lim_(x to0)(sin5x)/(sin3x)xxlim_(x to0)(cos3x)#

#=lim_(x to0)[(sin(5x)/(5x))/(sin(3x)/(3x))]xx5/3xx(cos0)..toApply (1)#

#=(lim_(5x to0)sin(5x)/((5x)))/(lim_(x to0)sin(3x)/((3x)))xx5/3xx1#

#=(1)/(1)xx5/3#

#L=5/3#

Mar 29, 2018

#lim_(x->0)(sin5x)/(tan3x)=5/3#

Explanation:

#lim_(x->0)(sin5x)/(tan3x)#

= #lim_(x->0)(sin5x)/(5x) * cos3x * (3x)/(sin3x)*(5x)/(3x)#

= #lim_(x->0)((sin5x)/(5x))*lim_(x->0)(cos3x)*lim_(x->0)((3x)/(sin3x))*lim_(x->0)((5x)/(3x))#

Now as #x->0#, #5x->0# and #3x->0# and hence, we can write this as

#lim_(5x->0)((sin5x)/(5x))*lim_(3x->0)(cos3x)*lim_(3x->0)((3x)/(sin3x))*5/3#

= #1*1*1*5/3#

= #5/3#