Evaluate the following: #int_(pi/6)^(pi/2)(cscxcotx)dx# I know that we are suppose to find the anti-derivative of cscxcotx, but i dont know how to?
1 Answer
Jan 15, 2017
Recall that
So, we have
#int_(pi//6)^(pi//2)(cscxcotx)dx=-int_(pi//6)^(pi//2)(-cscxcotx)dx=[-cscx]_(pi//6)^(pi//2)#
So, the anti-derivative you were looking for was
#-csc(pi/2)-(-csc(pi/6))=-1+2=1#
Another way to find the integral is to use
#int(cscxcotx)dx=int1/sinxcosx/sinxdx=intcosx/sin^2xdx#
This can be found with the substitution
#=int1/u^2du=intu^-2du#
Using
#=u^-1/(-1)=-1/u=-1/sinx=-cscx+C#
As we determined above!