Evaluate the indefinite integral #\int(x^2-1)/(x^3-3x+1)dx# using substitution?

I got stuck, check my work please?

Calculating substitute
#u=x^3-3x+1#
#du=(3x^2-3)dx#
#dx=(du)/(3x^2-3)#

Implementing the substitution
#\int(x^2-1)/(x^3-3x+1)dx\rArr\int(x^2-1)/u\times(du)/(3x^2-3)#
#\rArr\int\cancel((x^2-1))/u\times(du)/(3\cancel((x^2-1)))\rArr\color(red)(\int(du)/(3u))#