Express sin x - 3 cos x in the form of r sin (x-y) with r>0 and 0< y < (pi/2) ?

1 Answer
Apr 1, 2018

#f(x) = 3.16.sin (x - 71^@57)#

Explanation:

f(x) = sin x - 3cos x
Call #tan y = sin y/(cos y) = 3# --> #y = 71^@57# and
cos y = 0.316
#f(x) = sin x - (sin y.cos x)/(cos y)#
#f(x) = (sin x.cos y - sin y.cos x)/(cos y)#
Reminder of trig identity -->
(sin x.cos y - sin y.cos x) = sin (x - y)
Therefor,
#f(x) = rsin (x - y)#, with
#r = 1/(cos y) = 1/0.316 = 3.16#, and #y = 71^@57#
Finally,
#f(x) = 3.16.sin (x - 71^@57)#