(a)
#sqrt15sin(2x)+sqrt5cos(2x)#
#=sqrt20(sqrt15/sqrt20sin(2x)+sqrt5/sqrt20cos(2x))#
[Taking #sqrt15/sqrt20=cosalpha and sqrt5/sqrt20=sinalpha#]
#=sqrt20(cosalphasin(2x)+sinalphacos(2x))#
#=2sqrt5sin(2x+alpha)#
Where #alpha=tan^-1(sqrt5/sqrt15)=tan^-1(1/sqrt3)=pi/6#
(b)
(i)
#f(x)=2/(5+sqrt15sin(2x)+sqrtcos(2x))#
#=>f(x)=2/(5+2sqrt5sin(2x+alpha))#
The value of #f(x)# will be maximum when #sin(2x+alpha)# is minimum i.e. #sin(2x+alpha)=-1#
So
#f(x)_"max"=2/(5-2sqrt5)#
#=>f(x)_"max"=(2(5+2sqrt5))/((5-2sqrt5)(5+2sqrt5))#
#=>f(x)_"max"=(10+4sqrt5)/(25-20)=2+4/5sqrt5#
(ii)Here #f(x)# is maximum when
#sin(2x+alpha)=-1#
#=>sin(2x+pi/6)=sin((3pi)/2)#
#=>2x+pi/6=(3pi)/2#
#=>2x=(3pi)/2-pi/6=(4pi)/3#
#=>x=(2pi)/3#