Expressing in different form and finding a maximum? See picture below (7 marks)

enter image source here

1 Answer
Apr 11, 2017

enter image source here

(a)

sqrt15sin(2x)+sqrt5cos(2x)

=sqrt20(sqrt15/sqrt20sin(2x)+sqrt5/sqrt20cos(2x))

[Taking sqrt15/sqrt20=cosalpha and sqrt5/sqrt20=sinalpha]

=sqrt20(cosalphasin(2x)+sinalphacos(2x))

=2sqrt5sin(2x+alpha)

Where alpha=tan^-1(sqrt5/sqrt15)=tan^-1(1/sqrt3)=pi/6

(b)

(i)
f(x)=2/(5+sqrt15sin(2x)+sqrtcos(2x))

=>f(x)=2/(5+2sqrt5sin(2x+alpha))

The value of f(x) will be maximum when sin(2x+alpha) is minimum i.e. sin(2x+alpha)=-1

So

f(x)_"max"=2/(5-2sqrt5)

=>f(x)_"max"=(2(5+2sqrt5))/((5-2sqrt5)(5+2sqrt5))

=>f(x)_"max"=(10+4sqrt5)/(25-20)=2+4/5sqrt5

(ii)Here f(x) is maximum when

sin(2x+alpha)=-1

=>sin(2x+pi/6)=sin((3pi)/2)

=>2x+pi/6=(3pi)/2

=>2x=(3pi)/2-pi/6=(4pi)/3

=>x=(2pi)/3