(a)
sqrt15sin(2x)+sqrt5cos(2x)
=sqrt20(sqrt15/sqrt20sin(2x)+sqrt5/sqrt20cos(2x))
[Taking sqrt15/sqrt20=cosalpha and sqrt5/sqrt20=sinalpha]
=sqrt20(cosalphasin(2x)+sinalphacos(2x))
=2sqrt5sin(2x+alpha)
Where alpha=tan^-1(sqrt5/sqrt15)=tan^-1(1/sqrt3)=pi/6
(b)
(i)
f(x)=2/(5+sqrt15sin(2x)+sqrtcos(2x))
=>f(x)=2/(5+2sqrt5sin(2x+alpha))
The value of f(x) will be maximum when sin(2x+alpha) is minimum i.e. sin(2x+alpha)=-1
So
f(x)_"max"=2/(5-2sqrt5)
=>f(x)_"max"=(2(5+2sqrt5))/((5-2sqrt5)(5+2sqrt5))
=>f(x)_"max"=(10+4sqrt5)/(25-20)=2+4/5sqrt5
(ii)Here f(x) is maximum when
sin(2x+alpha)=-1
=>sin(2x+pi/6)=sin((3pi)/2)
=>2x+pi/6=(3pi)/2
=>2x=(3pi)/2-pi/6=(4pi)/3
=>x=(2pi)/3