Find a formula for nth derivative of #f(x)=x sin x#?
1 Answer
# y^((n)) = n sin(x + ((n-1)pi)/2) + x sin(x + n(pi)/2) #
Explanation:
We seek the
# f(x) = xsinx #
Starting with the given function:
# f^((0))(x) = xsinx #
Using the product rule we compute the first derivative:
# f^((1))(x) = x(d/dxsinx)+(d/dxx)sinx #
# \ \ \ \ \ \ \ \ \ \ \ \ = xcosx+sinx #
Similarity, for the second derivative
# f^((2))(x) = x(d/dxcosx)+(d/dxx)sinx + d/dxsinx#
# \ \ \ \ \ \ \ \ \ \ \ \ = -xsinx+cosx + cosx#
# \ \ \ \ \ \ \ \ \ \ \ \ = 2cosx-xsinx#
And further derivatives:
# f^((3))(x) = -2sinx-(xcosx+sinx)#
# \ \ \ \ \ \ \ \ \ \ \ \ = -3sinx-xcosx#
# f^((4))(x) = -3cosx-(-xsinx+cosx)#
# \ \ \ \ \ \ \ \ \ \ \ \ = -4cosx+xsinx#
So, By exploiting the phase shift properties, we have:
# y^((n)) = n sin(x + ((n-1)pi)/2) + x sin(x + n(pi)/2) #