Find all points on the graph where the tangent line is horizontal?

#x^2y-2x+18y=3#

Enter your answers as a comma separated list of ordered pairs (x,y)

1 Answer
Feb 7, 2018

Points at which tangents are horizontal are #(3,1/3)# and #(-6,-1/6)#

Explanation:

Differentiating #x^2y-2x+18y=3#, we get

#2xy+x^2(dy)/(dx)-2+18(dy)/(dx)=0#

or #(x^2+18)(dy)/(dx)=2-2xy#

or #(dy)/(dx)=(2-2xy)/(x^2+18)#

A function has horizontal tangent lines at points where #(dy)/(dx)=0#

i.e. at #(2-2xy)/(x^2+18)=0#

or #2-2xy=0# i.e. #xy=1# or #y=1/x#

Substituting value of #y# in #x^2y-2x+18y=3#, we get

#x^2/x-2x+18/x=3#

or #x^2-2x^2+18=3x#

or #x^2+3x-18=0#

or #(x+6)(x-3)=0#

Hence points are #(3,1/3)# and #(-6,-1/6)#

graph{(x^2y-2x+18y-3)((x-3)^2+(y-1/3)^2-0.01)((x+6)^2+(y+1/6)^2-0.01)=0 [-6.625, 3.375, -1.92, 3.08]}