Find #(dy)/(dx)# of #y=((x+1)^4(x-5)^3)/(x-3)^8#?

1 Answer
Sep 5, 2017

#dy/dx = (((x + 1)^4(x - 5)^3)/(x- 3)^8)(4/(x + 1) +3/(x- 5) - 8/(x- 3))#

Explanation:

Use logarithmic differentiation.

#lny = ln(((x + 1)^4(x - 5)^3)/(x - 3)^8)#

#lny = ln(x +1)^4 + ln(x -5)^3 - ln(x - 3)^8#

#lny = 4ln(x + 1) + 3ln(x - 5) - 8 ln(x - 3)#

Now take the derivative of both sides.

#1/y(dy/dx) = 4/(x + 1) + 3/(x - 5) - 8/(x -3)#

#dy/dx= y(4/(x + 1) + 3/(x - 5) - 8/(x- 3))#

#dy/dx = (((x + 1)^4(x - 5)^3)/(x- 3)^8)(4/(x + 1) +3/(x- 5) - 8/(x- 3))#

Hopefully this helps!