Find general solution of #dy/dx = (x+y)^2/(xy)# ?

2 Answers
Jun 10, 2018

Please see the explanation below

Explanation:

The ode is

#dy/dx=(x+y)^2/(xy)#

#dy/dx=(x^2+y^2+2xy)/(xy)#

#dy/dx=x/y+y/x+2#

Let #y=vx#, then

#dy/dx=v+x(dv)/dx#

#v+x(dv)/dx=1/v+v+2#

#x(dv)/dx=1/v+2=(1+2v)/v#

Now, separate the variables

#v/(1+2v)dv=dx/x#

#intv/(1+2v)dv=intdx/x#

Let #1+2v=u#, #=>#, #2dv=du#

#intv/(1+2v)dv=1/2int((u-1)du)/u#

#=1/2int(1-1/u)du#

#=1/2u-1/2lnu#

#=1/2(1+2v)-1/2ln(1+2v)#

Therefore,

#1/2(1+2v)-1/2ln(1+2v)=lnx+C#

#(1+y/x)-ln(1+2y/x)=2lnx+C_1#

#(1+y/x)=lnkx^2+ln((x+2y))/x#

#1+y/x=lnkx(x+2y)#

#y/x=lnkx(x+2y)-1# where #k in RR#

Jun 10, 2018

# 2y=xln{(2y+x)x^3c^4}#.

Explanation:

We have, #dy/dx=(x+y)^2/(xy)={x(1+y/x)}^2/(xy)#.

#:. dy/dx=x^2/(xy)(1+y/x)^2#

# i.e., dy/dx=x/y(1+y/x)^2#.

So, this is a Homogeneous Diff. Eqn.

Subst.ing #y/x=v, i.e., y=vx," we have, "dy/dx=x(dv)/dx+v#.

#:. x(dv)/dx+v=1/v(1+v)^2=1/v+2+v#.

#:. x(dv)/dx=1/v+2=(1+2v)/v#.

#:. v/(2v+1)dv=dx/x............"[Separable Variable]"#.

#:. dx/x=1/2*(2v)/(2v+1)dv=1/2{(2v+1)-1}/(2v+1)dv#,

#=1/2{(2v+1)/(2v+1)-1/(2v+1)}dv#.

# rArr dx/x=1/2(1-1/(2v+1))dv#.

#"Integrating, "intdx/x+lnc=1/2int(1-1/(2v+1))dv#.

#:. lnx+lnc=1/2{v-1/2*ln(2v+1)}=1/2v-1/4ln(2v+1)#.

#:. lnx+lnc+1/4ln(2v+1)=1/2v#,

# or, 4lnx+4lnc+ln(2v+1)=2v#.

#:. ln{(2v+1)(cx)^4}=2v#.

Replacing #v" by "y/x#, we get,

# 2y=xln{(2y+x)x^3c^4}#, as the desired General Solution!

Enjoy Maths.!