Let
#f(x)=(x^3-3x+2)^(1/2)=sqrt(x^3-3x+2)#
Therefore,
#x^3-3x+2>=0#
Let
#g(x)=x^3-3x+2#
#g(1)=1-3+2=0#
So #(x-1)# is a factor of #g(x)#
We perform a long division
#color(white)(aaaa)##x-1##color(white)(aaaa)##|##x^3+0x^2-3x+2##color(white)(aaaa)##|##x^2+x-2#
#color(white)(aaaaaaaaaaaaaaa)##x^3-x^2#
#color(white)(aaaaaaaaaaaaaaaa)##0+x^2-3x#
#color(white)(aaaaaaaaaaaaaaaaaa)##+x^2-x#
#color(white)(aaaaaaaaaaaaaaaaaaa)##+0-2x+2#
#color(white)(aaaaaaaaaaaaaaaaaaaaaaa)##-2x+2#
#color(white)(aaaaaaaaaaaaaaaaaaaaaaaaaa)##0+0#
So,
#g(x)=(x-1)(x^2+x-2)=(x-1)(x-1)(x+2)=(x-1)^2(x+2)#
We can build the sign chart
#color(white)(aaaa)##x##color(white)(aaaaa)##-oo##color(white)(aaaaaa)##-2##color(white)(aaaaa)##-1##color(white)(aaaa)##+oo#
#color(white)(aaaa)##x+2##color(white)(aaaaaa)##-##color(white)(aaaa)##0##color(white)(aaa)##+##color(white)(aaaa)##+#
#color(white)(aaaa)##(x-1)^2##color(white)(aaaa)##+##color(white)(aaaaa)##color(white)(aaa)##+##color(white)(aa)##0##color(white)
(a)##+#
#color(white)(aaaa)##g(x)##color(white)(aaaaaaaa)##-##color(white)(aaa)##0##color(white)(aaa)##+##color(white)(aa)##0##color(white)
(a)##+#
Therefore,
#g(x)>=0# when #x in [-2,+oo)#
The domain of #f(x)# is #x in [-2,+oo)#
graph{sqrt(x^3-3x+2) [-10, 10, -5, 5]}