Find the equation of the tangent and normal to the curve #x^2+y^2+4x+3y-25=0# at #(-3, 4)#?

1 Answer
Jun 6, 2017

Tangent: #11y=2x+50#

Normal: #2y+11x+41=0#

Explanation:

We have #f(x,y)=x^2+y^2+4x+3y-25=0#

In order to differentiate #f#, we must assume that #y=g(x)# and then differentiate #y# using the chain rule. Now, we can actually prove the above assumption, but we don't actually need to.

#f'(x,y)=2x+2y(y')+4+3y'=0#

#-2y(y')-3y'=2x+4#

#y'(-2y-3)=2x+4#

#y'=-(2x+4)/(2y+3)#

#y'(-3,4)=(2(-3)+4)/(2(4)+3)=2/11#

#thereforem_tan=2/11# and #m_normal=-1/(2/11)=-11/2#

Equation of tangent: #y-4=2/11(x+3)#

#y-4=2/11x+6/11#

#y=2/11x+50/11#

#11y=2x+50#

Equation of normal: #y-4=-11/2(x+3)#

#y-4=-11/2x-33/2#

#y+11/2x+25/2=0#

#2y+11x+25=0#

Proof that #y-=g(x)#

#f(x,y)=x^2+4x+y^2+3y-25=0#

Complete the square for both #x# and #y#

#(x+2)^2+(y+3/2)^2-4-9/4-25=0#

#(x+2)^2+(y+3/2)^2=125/4#

#(y+3/2)^2=125/4-(x+2)^2#

#y+3/2=+-sqrt(125/4-(x+2)^2)#

#y=-3/2+-sqrt(125/4-(x+2)^2)#