Find the possible values of #x# in #(|x+3|+x)/(x+2)>1#?

1 Answer
Jul 18, 2018

The solution is # x in (-5,-2)uu(-1,oo)#

Explanation:

There are #2# intervals to consider

#I_1=(-oo,-3)# and #I_2=(-3,+oo)#

In the first interval #I_1#

#((-x-3)+x)/(x+2)-1>0#

#=>#, #(-3-(x+2))/(x+2)>0#

#=>#, #(-x-5)/(x+2)>0#

let #g(x)=(-x-5)/(x+2)#

Build a sign chart

#color(white)(aaaa)##x##color(white)(aaaaaa)##-oo##color(white)(aaaa)##-5##color(white)(aaaa)##-3#

#color(white)(aaaa)##-x-5##color(white)(aaaaa)##+##color(white)(aaaaa)##-#

#color(white)(aaaa)##x+2##color(white)(aaaaaaa)##-##color(white)(aaaaa)##-#

#color(white)(aaaa)##g(x)##color(white)(aaaaaaaa)##-##color(white)(aaaaa)##+#

Therefore, in the interval #I_1#

#g(x)>0# when #x in (-5,-3)#

In the second interval #I_2#

#((x+3)+x)/(x+2)-1>0#

#=>#, #(2x+3-(x+2))/(x+2)>0#

#=>#, #(x+1)/(x+2)>0#

let #h(x)=(x+1)/(x+2)#

Build the sign chart

#color(white)(aaaa)##x##color(white)(aaaa)##-3##color(white)(aaaaaa)##-2##color(white)(aaaaaa)##-1##color(white)(aaaa)##+oo#

#color(white)(aaaa)##x+2##color(white)(aaaa)##-##color(white)(aaaa)##||##color(white)(aaaa)##+##color(white)(aaaa)##+#

#color(white)(aaaa)##x+1##color(white)(aaaa)##-##color(white)(aaaa)####color(white)(aaaaa)##-##color(white)(aaaa)##+#

#color(white)(aaaa)##h(x)##color(white)(aaaaa)##+##color(white)(aaaa)##||##color(white)(aaaa)##-##color(white)(aaaa)##+#

Therefore, in this interval #I_2#

#h(x)>0# when #x in (-3,-2) uu (-1,+oo)#

Finally,

The solution is

#x in (-5,-3)uu(-3,-2) uu (-1,+oo)#

That is

# x in (-5,-2)uu(-1,oo)#

graph{(|x+3|+x)/(x+2)-1 [-17.21, 11.27, -7.4, 6.84]}