Find the solution of the differential equation that satisfies the given initial conditions?

(Just give me tips, you don't have to do the whole thing)

a. #yy'=x\sinx# and #y(0)=-1#
b. #y'\tanx=y+8#, #y(\pi/3)=8# and #0\ltx\lt\pi/2#
c. #xy'=y+x^2\sinx# and #y(\pi)=0#

1 Answer
Apr 24, 2018

# (a) \ y^2 = 2sinx -2xcosx + 1 #
# (b) \ y = (32sqrt(3))/3 sinx - 8 #
# (c) \ y = -xcosx -x #

Explanation:

Part (a):

# yy'=xsinx # with #y(0)=-1#

This is separable, so by "separating the variables" , we get:

# int \ y \ dy = int \ xsinx \ dx # ..... [A]

To integrate the RHS we apply IBP

Let # { (u,=x, => (du)/dx,=1), ((dv)/dx,=sinx, => v,=-cosx ) :}#

Then plugging into the IBP formula:

# int \ u (dv)/dx \ dx = uv - int \ v (dv)/dx \ dx #

So we have:

# int \ xsinx \ dx = -xcosx + int \ cosx \ dx = sinx -xcosx #

Thus if we integrate [A] we get:

# 1/2 y^2 = sinx -xcosx + C #

Applying the initial conditions:

# y(0)=-1=> 1/2 = 0 -0 + C #

Thus we gain the particular solution

# 1/2 y^2 = sinx -xcosx + 1/2 #

# :. y^2 = 2sinx -2xcosx + 1 #

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Part (b):

# y' tanx = y+8 # with #y(pi/3)=8# and #0 lt x lt pi/2 #

This is also separable:

# 1/(y+8)y' = cotx #

We can "separate the variables" to get:

# int \ 1/(y+8) \ dy = int \ cotx \ dx #

Which is trivial to integrate:

# ln|y+8| = ln|sinx| + C #

Applying the initial conditions:

# y(pi/3)=8 => ln|8+8| = ln|sin (pi/3)| + C #
# :. ln16 = ln(sqrt(3)/2) + C => C = ln((32sqrt(3))/3) #

Thus we gain the particular solution:

# ln|y+8| = ln|sinx| + ln((32sqrt(3))/3) #
# :. y+8 = (32sqrt(3))/3 sinx #
# :. y = (32sqrt(3))/3 sinx - 8 #

|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||

Part (c):

# xy' = y + x^2 sinx # with #y(pi)=0#

We can write as:

# y' - y/x = x sinx #

Which is of the form:

# dy/dx + P(x)y=Q(x) #

So, we can construct an Integrating Factor:

# I = exp(int \ P(x) \ dx #
# \ \ = exp(int \-1/x \ dx) #
# \ \ = exp(-ln(x)) #
# \ \ = 1/x #

And if we multiply the DE by this Integrating Factor, #I#, we will have a perfect product differential;

# 1/x \ y' - 1/x^2 \ y = 1/x \ x sinx #

# :. d/dx (1/x \ y) = sinx #

This is now separable, so we can "separate the variables" to get:

# y/x = int \ sinx \ dx #

Which is trivial to integrate:

# y/x = -cosx + C #

Applying the initial conditions:

# y(pi)=0 => 0 = -cospi + C => C = -1 #

Thus we gain the particular solution:

# y/x = -cosx -1 #

# :. y = -xcosx -x #