Find the sum of the first n terms of the series #1+2(1+1/n) +3(1+1/n)^2 + 4(1+1/n)^3.......# Using the agp ( arithmerico - geometrico progression ) sum formula?

2 Answers
Aug 30, 2017

#S_n=n^2#

Explanation:

Let us find #S_m#, the sum of the first #m# terms of the series, as I do not want to mix it up with #n# in the series. If desired we can later put #m=n# to find sum of the first #n# terms of the series.

We have

#S_m=1+2(1+1/n)+3(1+1/n)^2+4(1+1/n)^3.......+m(1+1/n)^(m-1)# .......(A)

multiplying each term by #(1+1/n)#, we get

#S_m(1+1/n)=1(1+1/n)+2(1+1/n)^2+3(1+1/n)^3+4(1+1/n)^4.......+(m-1)(1+1/n)^(m-1)+m(1+1/n)^m# .......(B)

Subtracting (B) from (A), we get

#-S_m/n=1+(1+1/n)+(1+1/n)^2+(1+1/n)^3+...+(1+1/n)^(m-1)-m(1+1/n)^m#

= #((1+1/n)^m-1)/(1+1/n-1)-m(1+1/n)^m#

or #S_m=mn(1+1/n)^m-n^2((1+1/n)^m-1)#

and if #m=n#

#S_n=n^2(1+1/n)^n-n^2((1+1/n)^n-1)=n^2#

Aug 30, 2017

See below.

Explanation:

Using the inequality

#sum_(k=1)^n x_k ge (prod_(k=1)^n x_k)^(1/n)# we have

#2/(n(n+1))sum_(k=0)^(n-1)(k+1)x^k = sum_(k=0)^(n-1) mu_k x^k ge prod_(k=0)^(n-1) x^(kmu_k)#

where #mu_k =(2 (k+1))/(n(n+1))# and #sum_(k=0)^(n-1) mu_k = 1#

Now calling #phi = sum_(k=0)^(n-1) k mu_k# we have

#sum_(k=0)^(n-1)(k+1)x^k ge (n(n+1))/2 x^phi # now making #x = 1+1/n# we have

#sum_(k=0)^(n-1)(k+1)(1+1/n)^k ge (n(n+1))/2 (1+1/n)^phi #