Here,
#0^circ < color(violet)( a ) < 90^circ=>I^(st)Quadrant=>color(blue)(All, fns. >
0.#
#0^circ < color(violet)(b) < 90^circ=>I^(st)Quadrant=>color(blue)(All,fns. >
0#
So,
#0^circ < color(violet)(a+b) < 180^circ=>I^(st) and II^(nd)
Quadrant#
#=>color(blue)(sin(a+b) > 0#
Now,
#tana=4/3=>seca=+sqrt(1+tan^2a)=sqrt(1+16/9)=5/3#
#:.color(red)(cosa)=1/seca=color(red)(3/5#
#=>color(red)(sina)=+sqrt(1-cos^2a)=sqrt(1-9/25)=color(red)(4/5#
Also,
#cotb=5/12=>cscb=+sqrt(1+cot^2b)=sqrt(1+25/144)=13/12#
#:.color(red)(sinb)=1/cscb=color(red)(12/13#
#=>color(red)(cosb)=+sqrt(1-sin^2b)=sqrt(1-144/169)=color(red)(5/13#
Hence,
#sin(a+b)=sinacosb+cosasinb#
#=>sin(a+b)=4/5xx5/13+3/5xx12/13#
#sin(a+b)=20/65+36/65=56/65#