#"Reminder"#
#(uv)'=u'v+uv'#
Calculate the first and second derivatives
#f(x)=(2x^2-4x)e^x=2(x^2-2x)e^x#
#f'(x)=2*(2x-2)e^x+2(x^2-2x)e^x=2(x^2-2)e^x#
#f''(x)=2*(2x)e^x+2(x^2-2)e^x=2(x^2+2x-2)e^x#
The inflection points are when #f''(x)=0#
#x^2+2x-2=0#
Solving this quadratic equation for #x#
#x=(-2+-sqrt(2^2-4*1*(-2)))/(2)=(-2+-sqrt(12))/(2)#
#=(-2+-2sqrt(3))/2#
#=-1+-sqrt3#
The roots are
#x_1=-1-sqrt3#
#x_2=-1+sqrt3#
We can build the variation chart
#color(white)(aaa)##color(white)(aaa)##"Interval"##color(white)(aaa)##(-oo, x_1)##color(white)(aaa)##(x_1, x_2)##color(white)(aaa)##(x_2, +oo)#
#color(white)(aaa)##color(white)(aaa)##"Sign f''(x)"##color(white)(aaaaa)##+##color(white)(aaaaaaaa)##-##color(white)(aaaaaaa)##+#
#color(white)(aaa)##color(white)(aaa)##" f(x)"##color(white)(aaaaaaaaa)##uu##color(white)(aaaaaaaa)##nn##color(white)(aaaaaaa)##uu#
graph{(2x^2-4x)e^x [-17.35, 14.68, -7.95, 8.07]}