For what values of x is #f(x)=(x^2−x)e^x# concave or convex?

1 Answer
Dec 31, 2015

The function is convex on #(-oo,-3)uu(0,oo)#.
The function is concave on #(-3,0)#.

Explanation:

First, find the second derivative.

First Derivative

Use product rule.

#f'(x)=(2x-1)e^x+(x^2-x)e^x#

#=>e^x(x^2+x-1)#

Second Derivative

Use product rule again.

#f''(x)=e^x(x^2+x-1)+e^x(2x+1)#

#=>e^x(x^2+3x)=xe^x(x+3)#

Create a sign chart to find when #f''(x)# is positive (convex) and negative (concave). To find the important values on the chart, set #f''(x)=0#.

#xe^x(x+3)=0#

#x=-3,0#

#color(white)(ssssssssss)-3color(white)(ssssssssssssss)0#
#larr-------------rarr#
#color(white)(sssss)+color(white)(ssssssssssss)-color(white)(ssssssssssss)+#

The function is convex on #(-oo,-3)uu(0,oo)#.
The function is concave on #(-3,0)#.

graph{e^x(x^2-x) [-10, 10, -5, 5]}