#f(x) # is even so
#f(x)= sum_(k=0)^oo a_kcos(k pi x)#
NOTE
#int_-1^1 cos(n pi x) cos(m pi x) dx = 1/pi(Sin((m - n) pi)/(m - n) + Sin((m + n)pi)/(m + n))#
with
# 1/pi(Sin((m - n) pi)/(m - n) + Sin((m + n)pi)/(m + n)) = 0# for #n ne m# and
#int_-1^1 cos^2(n pi x) dx =1 + Sin(2 n pi)/(2 n pi)#
and also
#int_-1^1 x^2 cos(npi x) dx = (4 n pi Cos(n pi) +
2 (n^2 pi^2-2) Sin(n pi))/(n^3 pi^3)#
so finally
#(int_-1^1 x^2 cos(npi x) dx)/(int_-1^1 cos^2((k pix) dx)) = a_k #
so #a_k = (4Cos(kpi) )/(k^2 pi^2)#
with #a_0 =1/2int_-1^1 x^2 dx#
Attached a plot representing some mild approximations