What is #{sin10°+sin20°}/{cos10°+cos20°} =# ?

2 Answers
Oct 9, 2017

#(sin20^@+sin10^@)/(cos20^@+cos10^@)=2-sqrt3#

Explanation:

As #sinA+sinB=2sin((A+B)/2)cos((A-B)/2)#

and #cosA+cosB=2cos((A+B)/2)cos((A-B)/2)#

Hence #(sin10^@+sin20^@)/(cos10^@+cos20^@)#

= #(sin20^@+sin10^@)/(cos20^@+cos10^@)#

= #(2sin((20^@+10^@)/2)cos((20^@-10^@)/2))/(2cos((20^@+10^@)/2)cos((20^@-10^@)/2))#

= #(sin15^@cos5^@)/(cos15^@cos5^@)#

= #tan15^@=tan(45^@-30^@)#

= #(tan45^@-tan30^@)/(1+tan45^@tan30^@)#

= #(1-1/sqrt3)/(1+1/sqrt3)#

= #(sqrt3-1)/(sqrt3+1)xx(sqrt3-1)/(sqrt3-1)#

= #(3+1-2sqrt3)/(3-1)#

= #2-sqrt3#

Oct 9, 2017

#{sin10°+sin20°}/{cos10°+cos20°} #

#={2sin15°cos5°}/{2cos15°cos5°} #

#=tan15^@#

#=tan(45^@-30^@)#

#=(tan45^@-tan30^@)/(1+tan45^@tan30^@)#

#=(1-1/sqrt3)/(1+1/sqrt3)#

#=(sqrt3-1)/(sqrt3+1)#

#=(sqrt3-1)^2/((sqrt3)^2-1)#

#=(4-2sqrt3)/2=2-sqrt3#