Given a straight line #y=-1\2x+3# intersects the y-axis at point A and the x-axis at point B. A point P#(x.y)# divides the straight line in the ratio AB:BC = 1:2 .Find the coordinates of point P.?

1 Answer
Apr 23, 2018

Coordinates are #P(1/12,2)#

Explanation:

When a straight line #y=-12x+3# intersects #y#-axis at point A, coordinates of #A# are obtained by putting #x=0# i.e. #y=3# and coordinates are #A(0,3)# and for the #x#-axis at point B, put #y=0# which gives us #x=3/12=1/4# i.e. coordinates are #B(1/4,0)#.

Now coordinates of a point #P# which divides #A(x_1,y_1)# and #B(x_2,y_2)# in the ratio #l:m# are

#((lx_2+mx_1)/(l+m),(ly_2+my_1)/(l+m))#

Hence coordinates of point dividing #A(0,3)# and #B(1/4,0)# in the ratio #1:2# are

#((1xx1/4+2xx0)/3,(1xx0+2xx3)/3)# i.e. #P(1/12,2)#

graph{((x-1/12)^2+(y-2)^2-0.01)(x^2+(y-3)^2-0.01)((x-1/4)^2+y^2-0.01)(y+12x-3)=0 [-5.03, 4.97, -1.38, 3.62]}