Given #sin30^circ=1/2# and #tan30^circ=sqrt3/3#, how do you find #cot60^circ#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Gerardina C. May 24, 2017 #cot60°=sqrt3/3# Explanation: #cot60°=(cos60°)/(sin60°)# Since #cos60°=sin30°=1/2# and #sin60°=cos30°=sqrt3/2#, you get #cot60°=(1/cancel2)/(sqrt3/cancel2)=1/sqrt3=sqrt3/3=1/(tan60°)# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 5134 views around the world You can reuse this answer Creative Commons License