Given #sin60^circ=sqrt3/2# and #cos60^circ=1/2#, how do you find #cot60^circ#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Deepak G. Jan 11, 2017 #=0.577# or #1/sqrt3# Explanation: #cot60^@=cos60^@/sin60^@# #=(1/2)/(sqrt3/2)# #=1/sqrt3# #=sqrt3/3# #=0.577# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 2269 views around the world You can reuse this answer Creative Commons License