Given that #tan2A = 3/4# and that the angle #A# is acute, calculate, without using tables, the values of: (i) #cos2A# (ii) #sinA# (iii) #tanA# (iv) #tan3A# ?

1 Answer
Dec 17, 2017

#cos2A=4/5#; #sinA=1/sqrt10#; #tanA=1/3# and #tan3A=13/9#

Explanation:

As #tan2A=3/4#, we have

#(2tanA)/(1-tan^2A)=3/4#

or #8tanA=3-3tan^2A#

or #3tan^2A+8tanA-3=0#

or #(3tanA-1)(tanA+3)=0#

i.e. #tanA=1/3# or #tanA=-3#

but as #A# is acute, we cannot have #tanA=-3#

Hence #tanA=1/3#

and #tan3A=tan(A+2A)=(tanA+tan2A)/(1-tanAtan2A)#

= #(1/3+3/4)/(1-1/3xx3/4)=((4+9)/12)/(1-1/4)=13/12xx4/3=13/9#

#cos2A=(cos^2A-sin^2A)/(cos^2A+sin^2A)=(1-tan^2A)/(1+tan^2A)#

= #(1-1/9)/(1+1/9)=(8/9)/(10/9)=8/10=4/5#

As #2cos^2A-1=cos2A# i.e. #cos^2A=(1+4/5)/2=9/10#

#cosA=3/sqrt10#

and #sinA=cosAxxtanA=3/sqrt10xx1/3=1/sqrt10#