Given that #log_7 x^2y = p# and #log_7 xy^2=q#, how do you find #log_7 root 3(xy# in terms of #p# and #q#?

1 Answer
Feb 19, 2017

#log_7root(3)(xy)=(p+q)/9#

Explanation:

As #log_7 x^2y = p# and #log_7 xy^2=q#

we have #p+q=log_7 x^2y+log_7 xy^2#

= #log_7(x^2yxx xy^2)#

= #log_7(x^3y^3)#

= #log_7(xy)^3#

= #3log_7(xy)#

Hence #log_7root(3)(xy)#

= #1/3log_7(xy)#

= #1/3xx((p+q)/3)#

= #(p+q)/9#