Given the function #f(x)=3(x+2)-4#, how do you solve for the inverse function when #x=2#?

1 Answer
Aug 19, 2017

#f^-1(2)=0#

Explanation:

#f(x)=3(x+2)-4#

Let's solve for the inverse of this function

#f(x)=3(x+2)-4#

#y=3(x+2)-4#

#x=3(y+2)-4#

#x+4=3(y+2)#

#(x+4)/3=y+2#

#(x+4)/3-2=y#

#f^-1(x) = (x+4)/3-2#

#color(black)(* * * * * * * * * * * * * * * *)#

Now let's solve for #x=2#

#f^-1(2)=((2)+4)/3-2#

#f^-1(2)=(6)/3-2#

#f^-1(2)=2-2#

#f^-1(2)=0#