Given #theta = (19pi) / 6# how do you find #sintheta#? Trigonometry Right Triangles Trigonometric Functions of Any Angle 1 Answer Nghi N. Jul 25, 2015 Find #sin ((19pi)/6)# Ans: #-1/2# Explanation: On the trig unit circle, #sin ((19pi)/6) = sin ((7pi)/6 + (12pi)/6) = sin ((7pi)/6 + 2pi) =# #= - sin ((pi)/6) = - 1/2# Answer link Related questions How do you find the trigonometric functions of any angle? What is the reference angle? How do you use the ordered pairs on a unit circle to evaluate a trigonometric function of any angle? What is the reference angle for #140^\circ#? How do you find the value of #cot 300^@#? What is the value of #sin -45^@#? How do you find the trigonometric functions of values that are greater than #360^@#? How do you use the reference angles to find #sin210cos330-tan 135#? How do you know if #sin 30 = sin 150#? How do you show that #(costheta)(sectheta) = 1# if #theta=pi/4#? See all questions in Trigonometric Functions of Any Angle Impact of this question 4990 views around the world You can reuse this answer Creative Commons License