# Given y+3=-2/3(x-3) what is the slope and point on the graph?

Nov 20, 2016

$\text{slope"=-2/3, "point is} \left(0 , - 1\right)$

#### Explanation:

The equation of a line in $\textcolor{b l u e}{\text{slope-intercept form}}$ is.

$\textcolor{red}{\overline{\underline{| \textcolor{w h i t e}{\frac{2}{2}} \textcolor{b l a c k}{y = m x + b} \textcolor{w h i t e}{\frac{2}{2}} |}}}$
where m represents the slope and b, the y-intercept.

Rearrange the given equation into this form.

distribute bracket on right side.

$\Rightarrow y + 3 = - \frac{2}{3} x + 2$

subtract 3 from both sides.

$\Rightarrow y = - \frac{2}{3} x - 1$

$\Rightarrow m = - \frac{2}{3} \text{ and } b = - 1$

y-intercept = - 1 which is the coordinate point (0 ,-1)

To obtain any coordinate point on the line, select values for x and substitute them into the equation for corresponding value of y.

$x = 3 \Rightarrow y = \left(- \frac{2}{3} \times 3\right) - 1 = - 2 - 1 = - 3$

$\Rightarrow \left(3 , - 3\right) \text{ is also a point on the line}$
graph{-2/3x-1 [-10, 10, -5, 5]}