How can #(8,-45º)# be converted into rectangular coordinates?
2 Answers
Aug 9, 2017
Explanation:
We're asked to find the rectangular form of a given polar coordinate.
To do this, we use the equations
#ul(x = rcostheta#
#ul(y = rsintheta#
In this case,
-
#r = 8# -
#theta = -45^"o"#
So we have
#x = 8cos(-45^"o") = ul(4sqrt2#
#y = 8sin(-45^"o") = ul(-4sqrt2#
The coordinate is thus
#color(blue)(ulbar(|stackrel(" ")(" "(4sqrt2, -4sqrt2)" ")|)#
Aug 9, 2017
Explanation:
#"to convert from "color(blue)"polar to rectangular coordinates"#
#"that is "(r,theta)to(x,y)" using"#
#•color(white)(x)x=rcosthetacolor(white)(x);y=rsintheta"#
#"here " r=8" and "theta=-45^@#
#rArrx=8cos(-45)^@=8cos(45)^@=8xx1/sqrt2=4sqrt2#
#y=8sin(-45)^@=-8sin(45)^@=-8xx1/sqrt2=-4sqrt2#
#rArr(8,-45^@)to(4sqrt2,-4sqrt2)#