How can i solve this integral? #int (2/(5x)sqrt (3+4/x^2)dx#
1 Answer
I got:
Explanation:
#I=int2/(5x)sqrt(3+4/x^2)dx#
Use the substitution
#I=2/5intsqrt3/2tanthetasqrt(3+4(sqrt3/2tantheta)^2)((-2)/sqrt3cotthetacscthetad theta)#
Canceling
#I=(-2)/5intcscthetasqrt(3+3tan^2theta)d theta#
Factoring
#I=(-2sqrt3)/5int(d theta)/(sinthetacostheta)#
Note that
#I=(-4sqrt3)/5int(d theta)/(sin2theta)#
#I=(-4sqrt3)/5intcsc2thetad theta#
The integral of cosecant is fairly standard. Look it up here if you aren't sure.
Note that I'll use the form
You'll also need to undo the
#I=(2sqrt3)/5lnabs(csc2theta+cot2theta)+C#
Use
#I=(2sqrt3)/5lnabs(1/(2sinthetacostheta)+(1-tan^2theta)/(2tantheta))+C#
Before proceeding we can factor
#I=(2sqrt3)/5lnabs(cscthetasectheta+cottheta-tantheta)+C#
Our original substitution was
#tantheta=1/cottheta=2/(sqrt3x)# #csctheta=sqrt(cot^2theta+1)=sqrt(3x^2+4)/2# #sectheta=sqrt(tan^2theta+1)=sqrt(3x^2+4)/(sqrt3x)#
So:
#I=(2sqrt3)/5lnabs((3x^2+4)/(2sqrt3x)+(sqrt3x)/2-2/(sqrt3x))+C#