How do I compute #dy/dx# given #sin(6x + 2y) = xy#?

1 Answer
Apr 6, 2018

The implicit derivative #dy/dx# is #(y-6cos(6x+2y))/(2cos(6x+2y)-x)#.

Explanation:

Implicitly differentiate both sides:

#d/dx[sin(6x+2y)]=d/dx[xy]#

Chain rule:

#cos(6x+2y)*d/dx[6x+2y]=d/dx[xy]#

#cos(6x+2y)*(6+2(dy)/dx)=d/dx[xy]#

#6cos(6x+2y)+2cos(6x+2y)(dy)/dx=d/dx[xy]#

Product rule:

#6cos(6x+2y)+2cos(6x+2y)(dy)/dx=d/dx[x]*y+x*d/dx[y]#

#6cos(6x+2y)+2cos(6x+2y)(dy)/dx=y+x*dy/dx#

#2cos(6x+2y)(dy)/dx-x*dy/dx=y-6cos(6x+2y)#

#dy/dx(2cos(6x+2y)-x)=y-6cos(6x+2y)#

#dy/dx=(y-6cos(6x+2y))/(2cos(6x+2y)-x)#

That's the derivative. Hope this helped!