How do I evaluate #int_(pi/2)^picscx dx#?

1 Answer
Jan 29, 2015

The answer is that this integral is DIVERGENT.

First of all I remember that: #cscx=1/sinx#, so the integral becoms:

#int_(pi/2)^picscxdx=int_(pi/2)^pi1/sinxdx#.

Before integrate this function, it is useful to remember the parametric formula of sinus, that says:

#sinx=(2t)/(1+t^2)#, where #t=tan(x/2)#.

Now the integral will be done with the method of substitution:

#tan(x/2)=trArrx/2=arctantrArrx=2arctantrArrdx=2(1/(1+t^2))dt#.

And it is important to change also the two limits of integrations:

if #x=pi/2rArrt=tan((pi/2)/2)=tan(pi/4)=1#, and
if #xrarrpirArrtrarrtan((pi)/2)rarr+oo#.

It is clear that the integral becoms an improper integral. We can do the integral without the limits of integration and than we will do the final count.

Our integral becoms:

#int1/sinxdx=int1/((2t)/(1+t^2))2(1/(1+t^2))dt=int(1+t^2)/(2t)2(1/(1+t^2))dt=int1/tdt=ln|t|+c=ln|tan(x/2)|+c#.

Now, using the fundamental theorem of Calculus, the final count:

#lim_(Mrarr+oo)[ln|tan(x/2)|]_1^M=lntan(+oo)-ln(tan1)=+oo#

So the integral is divergent.

Did we avoid ALL this counts? The answer is YES!

First of all a substitution: #x=pi-trArrdx=-dt#

If #x=pi/2rArrpi/2=pi-trArrt=pi/2#, and

if #x=pirArrpi=pi-trArrt=0#

#int_(pi/2)^pi1/sinxdx=int_(pi/2)^0(1/sin(pi-t))(-dt)=-int_(pi/2)^0(1/sin(pi-t))dt=int_0^(pi/2)1/sintdt#

The function #sint# near zero is asymptotic to #t#, and the #int_0^(pi/2)1/tdt# is divergent.