The answer is: #3/2*xsqrt(4+x^2)+6arcsinh(x/2)+c#
First of all:
#intsqrt(36+9x^2)dx=3intsqrt(4+x^2)dx# and now we have to substitute:
#x=2sinhtrArrdx=2coshtdt#.
So:
#3intsqrt(4+x^2)dx=3intsqrt(4+4sinh^2t)*2coshtdt=#
#=3int2sqrt(1+sinh^2t)*2coshtdt=12intcosh^2tdt=#
#=12int(cosh2t+1)/2dt=6(sinh2t)/2+6t+c=#
#=3*2sinhtcosht+6t+c=#
Now: #sinht=x/2#, #t=arcsinh(x/2)#
since #cosht=sqrt(1+sinh^2t#, than #cosht=sqrt(1+x^2/4)=#
#=sqrt((4+x^2)/4)=1/2sqrt(4+x^2)#
So:
#I=6*x/2*1/2sqrt(4+x^2)+6arcsinh(x/2)+c=#
#=3/2*xsqrt(4+x^2)+6arcsinh(x/2)+c#