Substitute #t= e^x#, so that #dt = e^xdx#. Noting that #e^(2x) = e^x xx e^x#, we have:
#int (2e^(2x))/(e^(2x)+16e^x+63)dx = int (2t)/(t^2+16t+63) dt#
Factorize the denominator:
#t^2+16t+63 = (t+7)(t+9)#
and integrate using partial fractions decomposition:
#(2t)/(t^2+16t+63) = A/(t+7)+B/(t+9)#
#2t = A(t+9)+B(t+7)#
#2t = (A+B)t + (9A+7B)#
#{(A+B = 2),(9A+7B=0):}#
#{(A-7),(B=9):}#
#int (2t)/(t^2+16t+63) dt = -7int (dt)/(t+7) + 9 int (dt)/(t+9)#
#int (2t)/(t^2+16t+63) dt = -7ln abs (t+7) + 9 ln abs(t+9) +C#
and undoing the substitution:
#int (2e^(2x))/(e^(2x)+16e^x+63)dx = -7ln (e^x+7) + 9 ln (e^x+9) +C#