The given equation is
#y=(sin e^x)^(ln x^2)#
Take the natural logarithm of both sides then differentiate with respect to x
#y=(sin e^x)^(ln x^2)#
#ln y=ln (sin e^x)^(ln x^2)#
#ln y=(ln x^2)*ln (sin e^x)#
We now have a derivative of a product at the right sides of the equation.
Obtain the derivative of both sides
#ln y=(ln x^2)*ln (sin e^x)#
#d/dx(ln y)=d/dx[(ln x^2)*ln (sin e^x)]#
#1/y*y'=(ln x^2)*d/dx(ln sin e^x)+(ln sin e^x)*d/dx(ln x^2)#
#1/y*y'=(ln x^2)*1/( sin e^x)*d/dx(sin e^x)+(ln sin e^x)*1/x^2*d/dx(x^2)#
#1/y*y'=(ln x^2)*1/( sin e^x)(cos e^x)d/dx(e^x)+(ln sin e^x)*1/x^2*2x#
#1/y*y'=(ln x^2)*1/( sin e^x)(cos e^x)(e^x)+2/x*ln sin e^x#
#1/y*y'=(ln x^2)*(cot e^x)(e^x)+2/x*ln sin e^x#
Multiply both sides by #y# then simplify
#y*1/y*y'=y*(ln x^2)*(cot e^x)(e^x)+2/x*ln sin e^x#
#y'=y*(ln x^2)*(cot e^x)(e^x)+2/x*ln sin e^x#
#y'=(sin e^x)^(ln x^2)[e^x*ln x^2*cot e^x+2/x*ln sin e^x]#
God bless....I hope the explanation is useful.