How do I find the value of cot pi/12?

1 Answer
Oct 26, 2015

Find exact value of #cot ((pi)/12)#

Ans: #(2 - sqrt3)#

Explanation:

#cot ((pi)/12) = 1/(tan ((pi)/12)#. First find #tan ((pi)/12)#
Call #tan ((pi)/12) = t#
#tan (2t) = tan ((pi)/6) = 1/sqrt3#
Apply the trig identity: #tan 2a = (2tan a)/(1 - tan^2 a)#
We get:
#1/sqrt3 = (2t)/(1 - t^2)#
#1 - t^2 = 2sqrt3t#. Solve the quadratic equation in t.

#t^2 + 2sqrt3t - 1 = 0#
#D = d^2 = b^2 - 4ac = 12 + 4 = 16 #--> #d = +- 4#
There are 2 real roots:
#tan ((pi)/12) = t = - 2sqrt3/2 +- 4/2 = -sqrt3 +- 2#
Since the arc (pi/12) is in Quadrant I, its tan is positive, then
#tan ((pi)/12) = (-sqrt3 + 2).#
Check by calculator:
#tan ((pi)/12) = tan 15 = 0.27.#
#(2 - sqrt3) = 0.27#. OK