How do I find the value of csc pi/12?

1 Answer
Aug 12, 2015

Find #csc (pi/12)#

Ans: #2/sqrt(2 - sqrt3)#

Explanation:

#csc (pi/12) = 1/sin (pi/12)#. Find #sin (pi/12)#
#call sin (pi/12) = sin t#
#cos 2t = cos ((2pi)/12) = cos ((pi)/6) = sqrt3/2.#
Use trig identity: #cos 2t = sqrt3/2 = 1 - 2sin^2 t#
#2sin^2 t = 1 - sqrt3/2# --> #sin^2 t = (2 - sqrt3)/4#
#sin (pi/12) = sin t = +- sqrt(2 - sqrt3)/2#
Since sin #(pi/12)# is in Quadrant I, therefor, only the positive answer is accepted.

#csc (pi/12) = 2/(sqrt(2 - sqrt3)#