How do I find the value of sec pi/12?

1 Answer
Oct 17, 2015

Find: #sec (pi/12) #

Explanation:

#sec (pi/12) = 1/(cos pi/12)#. Find #cos (pi/12).#
Call #cos (pi/12) = cos a# --># cos 2a = cos ((2pi)/12) = cos (pi/6) = sqrt3/2#
Apply the trig identity: #cos 2a = 2cos^2 a - 1.#
#cos 2a = sqrt3/2 = 2cos^2 a - 1#
#cos^2 a = 1 = sqrt3/2 = (2 + sqrt3)/2#
#2cos^2 a = (2 + sqrt3)/4#
#cos a = +- sqrt(2 + sqrt3)/2#
Since the arc (pi/12) is in Quadrant I, its cos is positive.
Therefor, #cos (pi/12) = cos a = sqrt(2 + sqrt3)/2#
#sec (pi/12) = 1/(cos a) = 2/sqrt(2 + sqrt3)#.
Check by calculator:
#cos (pi/12) = cos 15 = 0.97#
#sqrt(2 + sqrt3)/2 = 1.93/2 = 0.97#. OK