How do I find the value of tan(7pi/12)?

1 Answer
Aug 16, 2015

Find #tan ((7pi)/12)#

Ans: - (2 + sqrt3)

Explanation:

Call #tan ((7pi)/12) = t#
#tan 2t = tan ((14pi)/12) = tan ((2pi)/12 + pi) = tan (pi/6 + pi) = tan (pi/6) = 1/sqrt3#
Apply the trig identity: #tan 2t = (2tan t)/(1 - tan^2 t)#

#tan 2t = 1/sqrt3 = 2t/(1 - tan^2 t)#
#1 - t^2 = 2sqrt3t #-->
#t^2 + 2sqrt3t - 1 = 0#
#D = d^2 = b^2 - 4ac = 12 + 4 = 16 -#-> #d = +- 4#
#t = -2sqrt3/2 +- 4/2# -->
#t = tan ((7pi)/12) = - sqrt3 +- 2 #

Since the arc (7pi)/12 is in Quadrant II, only the negative answer is accepted. #tan((7pi)/12) = - 2 - sqrt3 = -3.732#

Check by calculator
tan ((7pi)/12) = tan 105 = -3.732. OK