How do i get the exact value of sec 225°?

2 Answers
Apr 26, 2018

#sec225°# = #-sqrt2#

Explanation:

Apply the identity #sectheta=1/(costheta)#

#sec225° = 1/(cos225°) #

#1/(cos225°) # = #1/(cos(180°+45°)#

Use the angle sum identity #cos(a+b)=(cosa ⋅ cosb)-sina ⋅ sinb)#
where #a=180°# and #b=45°#

#1/(cos(180°+45°)#=#1/((cos180° ⋅ cos45°) - (sin180° ⋅ sin45°))#

#cos180°=-1#

#cos45°=(√2) / 2#

#sin180°=0#

#sin45°=(√2) / 2#

#1/((cos180° ⋅ cos45°) - (sin180° ⋅ sin45°))#=#1/((-(√2) / 2)-0#

#1/((-(√2) / 2)#=#-2/sqrt2#

Rearrange the equation so there is no square root in the denominator

#-2/sqrt2##sqrt2/sqrt2# = #-(2sqrt2)/2# = #-sqrt2#

Apr 26, 2018

#- sqrt2#

Explanation:

Use trig identity:
cos (a + b) = cos a.cos b - sin a. sin b
In this case -->
cos 225 = cos (180 + 45) = cos 180.cos 45 - sin 180.sin 45.
Since: sin 180 = 0; cos 180 = -1, and #cos 45 = sqrt2/2#, therefor:
#cos 225 = (-1)sqrt2/2 = - sqrt2/2#
#sec 225 = 1/(cos 225) = - 2/(sqrt2) = - sqrt2#
Check by calculator.
cos 225 = - 0.707 --> sec 225 = 1/0.707 = 1.414
#sec 225 = -sqrt2 = - 1.414 #. Proved.