How do solve #3e^x=2e-x+4#?
1 Answer
Nov 8, 2015
If you mean
#x = ln((2+sqrt(10))/3)#
Explanation:
Assuming you meant
#3(e^x)^2 = 2+4(e^x)#
Subtract the right hand side from the left to get:
#3(e^x)^2-4(e^x)-2 = 0#
Using the quadratic formula, we get:
#e^x = (4+-sqrt(4^2-(4xx3xx-2)))/(2*3) =(4+-sqrt(16+24))/6#
#=(4+=sqrt(40))/6 = (4+-2sqrt(10))/6 = (2+-sqrt(10))/3#
Now
#e^x = (2+sqrt(10))/3#
and hence:
#x = ln((2+sqrt(10))/3)#